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1. The stem integrates to give z = y" (Z—z) and for part (i) using n = 1, the stem gives

d d . . _ . . -
é = ﬁﬁ which can solved for z using the initial conditions, and the integrated stem is a first

order differential equation for y, which when solved, again with the initial conditions, produces the
required result. Part (ii) follows the same pattern, with n = —2 instead, which has solution

1
y = eExz
2. The simplification in the opening is (1 - x2n+1) , obtained by repeated use of the
difference of two squares. A simple algebraic rearrangement, followed by taking a limit, the
logarithm of both expressions, and differentiation produces the other three results in part (i). Part
(i) can be obtained by replacing x by x3 inIn(1 — x) = —Z?‘;Oln(l + xzr) from part (i),
factorising the difference and the sums of cubes and subtracting that part (i) result before
differentiating. An alternative is to replicate part (i) using instead the product

21’l+1

A+x+x)A—x+xDA -2 +xHA —x* +x8) . (1 - 2" +x
care is required with the rearrangement, and consideration of the limit.

) , but then a little extra

3. The two parabolas, with vertices oriented in the direction of the positive axes, touch in the
third quadrant in case (a), and in the first quadrant in the other three cases. In case (b), there are
intersections in the second and third quadrants, in (c) in the third and fourth, and in (d), the trickiest
case, they are in the third quadrant and in the first, between the touching point and the vertex of
the parabola on the x axis. The first result of part (ii)is obtained by eliminating y between the two
equations, the second by differentiating and equating gradients, and the third, by eliminating x*,
(a* = aa®), from the first result using the second.

21 —1+v13 13 5 k
—E<2(d),a— ,k——\/13—5,;<2(d),

The cases that ariseare a =1, =21, 5 5

L3

m

anda=L\/13, k="2Vi3-2 k<0 (a).
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Similarly, (n + 1)? can be writtenas n(n—1) +3n+1,and 2n—1)3 as 8n(n—1)(n —2) +
n?+1

tDmiz) o

4. Writing % as % + — and then cancelling the first fraction, give exponential series.

12n(n — 1) + 2n — 1, the latter giving the result 21e + 1. Using partial fractions, n

. 5 ) . .
be writtenas 1 + ﬁ — the first term giving a GP, and the other two, log series. The result for

part (ii) isthus 12 —161In2 .

5. For non-integer rational points, it makes sense to use values of cos8 and sin8 based on
Pythagorean triples such as 3,4, 5 or 5, 12, 13, The technique for (i) (b) can be used for (ii) (a),
merely by changing the value of m, whereas for (ii) (b), a slightly more involved expression is needed
suchas x = acos 6 + bVmsin@, y=asinf — bvVmcos 6 . For (i) (c), there are two alternatives
that work sensibly, = a cosh @ + Vm sinh @, y = asinh 8 + Vm cosh @

or x = asec +vVm tanf, y=atanf + vm secé.



A completely different approach for the last part of the question is to write
x%2 —y%2 = (x +y)(x — y) = 7 and to choose x + ¥y = a + b\/2 with nearly any choices of rational

a and b possible. Then,as x —y = ﬁ, and numbers of the form a + bv/2 are a field over the

operations X and +, x — y has to be of the correct form, and then solving for x and y, they
likewise have to be of the required form.
Some possible solutions are
(i)(a) (1,0) and (%,g) ,(b)(1,1),14+m,and (g,%) (usingm =1,cos8 = %)
(ii)(a) (1,\/2) and (g + E\/Z,g - 2\/2) (usingm = 2,cos8 = %) , (b) (g + g\/Z,l—Sz - %\/2) (using
a=3,b=1, cosf =§), (c) (%+%\/7,35—6+§\/2) (usingm =2,a =3 and cosh@ =§,
sinh @ =12 or sec@ =E,tan0 =E)
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6. Substituting x + iy for zin the quadratic equation and equating real and imaginary parts
yields the first two results, the imaginary gives two situations, one as required and the other
substituted into the real gives the second. The first of these two results substituted into the real
gives a circle radius 1, centre the origin, whilst the second gives the real axis without the origin. The
second quadratic equation succumbs to the same approach giving the real axis without the origin
(again), and a circle centre (—1,0) radius 1 also omitting the origin. The same approach in the third

—x2+Vx%—8x
case yields the real axis with p = % and considering the discriminant, x < 0 and x = 2.
3
On the other hand, p = —2x produces y2 == x+1
7. The second order differential equation y + 7y + 6y = 0 may be obtained by

differentiating the first equation, then substituting for Z using the other equation, and then doing
likewise for z using the first again. The solutions for y and z follow in the usual manner. Parts (i)

. _ 9=t _ 9 ,—6t _c(e®-1) ¢ ceSle=1) gt ;
and (ii) yield z,(t) = 2e 2e v and z,(t) = o © D © respectively. Part (iii)
merely requires the sum to be expanded and two geometric progressions emerge so that
_ 2e (e°-1)
T e—1(e6-1)
8. F,=1,F;=2,F =3,F; =5 soboth expressions in part (i) equal -1. Considering either

[((FiFnss — Fpy1Fnsz) — (FpooFppq — Foi )] or (FyFrys — FrgaFpgo) + (FaoqFrgo — BiFnyq)
and applying the recurrence relation, both can be found to be zero. \so the given expression is
shown to be 1 if nis odd and -1 if n is even. The tan compound angle formula enables the proofin
part (iii) to be completed once the initial recurrence relation and the result from part (ii) have been
applied to the expression obtained following algebraic simplification. Rearranging the result and

substituting into the required sum gives, by the method of differences, Y5> tan™! ( ! ) = %
2r+1



9. Eliminating Ty, T, , a, and «a between the five equations myg — T, = mya,
Tir—Tyr=Ia,T,—myg=mya,a= %, and P+ Mg = Mg + T, + T, yields the required

result for 1. The only difference in the second part is that the second equation becomes

((my+my)P—4mymyg)r?— (my—my)Cr

Tyr — T,r — C = I, and so the same elimination yields I =

(mq1+my)g—P !
which can be seen to be smaller than that in part (i). The first four equations in this second part give

c I .
mg-myg - = (ml +m, + r_Z) a,andsoasa > 0, the required result follows.

10. After motion commences, the next at rest position has the string at g to the vertical.

Conserving energy between the two at rest positions gives 4 = 3mg . Conserving energy for the
general position and resolving radially, bearing in mind that the angle of the radius to the vertical is
twice the angle of the string to the vertical, and using a double angle formula gives the required
result. The discriminant being negative or completing the square demonstrates that the reaction
force is always positive.

11. Various approaches can be used to find the energy terms. If potential energy zero level is

taken to be at P, then the initial potential energy is —2Mg% . When the particle has fallen a
distance x, the kinetic energy of the particle is %mvz, the potential energy of the particle is —mgx,
the potential energy of the part of the stationary piece of string of length xis — zx_L 2Mg g , the
potential energy of the remaining piece of (doubled up) string is — (1 - Zx_L) 2Mg (x + % (L - %x)) ,

1
L—=x
2

and the kinetic energy of the shorter moving piece is 1 2M v?. This yields the first result and

2 2L
differentiation of it yields the second. As 0 < x < 2L, ML — % > % ,as Mgx > 0 and the

ng(mL +ML—%)

denominator is twice a square > 0 , the final result follows.

2(mL+ML—%)2

12. The sketched region contained by AB, and the two line segments connecting A and B to the
2
centre of the triangle. A simple approach for the pdfis via P(X > x) « (% - x) , finding the

constant of proportionality and then differentiating to give the required result. E(X) = é .

2

For the second part, g(x) = 192 G - x) ,andso E(X) = i_

P(z<Z<z+6Z)
P(a<Z<b)

E(X|X >0) = E(6Z + p|oZ + u > 0) yields the first result of part (ii), and that

13. That P(z<Z <z+6d6zla<Z<b)= yields the part (i) result. Similarly, that

m=E(|X]) = EX|X>0)P(X>0)+ E(—X|X <0) P(X < 0) yields the second.
Using Var(X) = E(X?) — u? = 0% ,and so

Var(IX]) = E(IX]*) — (EIX])? = E(X?) —m? = p* + 0% —m?



